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1 Test Description

The test case is based on the Lotka-Volterra example from Tiller, M; Modelica by Example, http://book.
xogeny . com.

1.1 Mathematical Equations
i = (a—by) (1)
y=y(dz—c) (2)

Variable x stands for the amount of prey species, y is the predator species. a is the reproduction rate, b
the reduction factor due to predation. c is the rate of starvation and d the rate factor reresenting grows of
predator species due to consumption of species x.

1.2 Requested solution

Solution for variables z and y is to be obtained for the time interval ¢t € [0,T], T = 10.

Constants shall be selected as follows:

e a=0.1
e b=0.02
e c=04
o d=0.02

1.3 Expected results

The problem is nonlinear and has a coupled solution, that can be, for example, be generated with a traditional
coupled system solver (e.g. Modelica). The solution for constants is shown in Figure 1.


http://book.xogeny.com
http://book.xogeny.com

40 T

W x (prey)

35 || W y (predator)

30

25

20

X (prey) [---]

w
L R

o

20 40 60 80
Zeit [s]

.
o
o

Figure 1: Exact solution

The solution is completely continuous without any state events.

1.4 Reference Modelica Model

The equations can be solved directly in a coupled manner with Modelica. The source code for a fully coupled
solution in Modelica is given below in Listing 1.

model LotkaVolterra
parameter Real A=0.1 "Reproduction rate of prey";
parameter Real B=0.02 "Mortality rate of predator per prey'";
parameter Real C=0.4 "Mortality rate of predator";
parameter Real D=0.02 "Reproduction rate of predator per prey";
parameter Real x0=10 "Initial prey population';
parameter Real y0=10 "Initial predator population";
Real x(start=x0) "Prey population";
Real y(start=y0) "Predator population';
initial equation
x = x0;
y = y0;
equation
der(x) = x*(A-Bx*y);
der (y) = y*(D*x-C);
end LotkaVolterra;

Listing 1: Modelica Code Listing

2 Co-Simulation

2.1 Decomposition

For the purpose of testing Co-Simulation masters the test case is split into two parts, one for the prey species
and one for the predator species. Both are coupled in a cycle.

FMU Cycle Input Equations Output

Prey 0 Yy z =z (a—by) x
Predator 0 x y=y(dx—rc) y




2.2 Evaluation Order

Prey FMU shall be evaluated first.

2.3 Implementing FMUs

FMUs are implemented in direct C/C++ code. The time integration has an exact solution, hereby using
constant values for input variables throughout the communication interval. For example, the time integration
formula for the prey species is derived as follows:
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Equation (1) gives the exact solution for constant y. Since y (¢) and hence also G (t) = A— By (t) is changing
within the integration interval, the solution x (t1) holds an integration error, they may become, due to the
exponential nature of the equation, very large and cause instability in the outer solution method, especially
when using a non-iterative master algorithm.

The code example 2 below shows the relevant portion of the doStep() function:

// state of FMU before integration:

// m_currentTimePoint = tIntervalStart;

// m_y[0] = z(tIntervalStart)

// m_reallInput [FMI_INPUT_ Y] = y(tIntervalStart...tCommunicationIntervalEnd) = const

// compute time step size

double dt = tCommunicationIntervalEnd - m_currentTimePoint;
double y = m_reallnput [FMI_INPUT_Y];

double x = m_y[0];

double x_end = x*std::exp( (A - Bxy)x*dt);

m_y [0] = x_end;

// update state of FMU to tCommunicationIntervalEnd
m_tInput = tCommunicationIntervalEnd;

m_realOutput [FMI_OUTPUT_X] = x_end;

m_currentTimePoint = tCommunicationIntervalEnd;

Listing 2: FMU Listing, doStep-function

3 Evaluation of suitable Master-Algorithms

3.1 Gauss-Seidel without iteration and with constant step sizes

Running the integration with constant step size of h = 0.1s and without iteration already gives pretty good
results (see Figure 2).
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Figure 2: No iteration, constant steps (0.1 s)

3.2 Gauss-Seidel with larger, constant step sizes and with/without iteration

Using larger step sizes (for example h = 0.55) we expect larger errors. In the variant without iteration, the
information about the opposing species concentration arrives delayed in the FMU, because the integration
in each interval is done using the values at the begin of the interval. Hence, the curves have a slight delay
behind the correct solution, see Figure 3 (no iteration-curves).

Alternatively, an iterative Gauss-Seidel-method could be used. When the solution has converged (which
corresponds somewhat to an implicit integration scheme), the species concentrations are computed using
the opposite species concentration at the end of each integration interval. This leads to a much dampened
solution where the curves react faster compared to the reference solution (Figure 3, GS curves).

Consider, for example, the interval 25..25,5 s. The concentration of the predator species is strongly increasing
in this interval, from y (25) = 3.52 to y(25.5) = 4.22. If the integration of the prey species is done over
this interval using the input value y (25) the concentration x (25.5) will be larger than that obtained when
integrating with a larger predator concentration y (25.5). As a result, the prey concentration will not reach
the same concentration as the correct solution, and subsequently, also the predator concentration will be
affected leading to an overall dampened solution. With this time step size, effectively a different problem
appears to be solved.
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Figure 3: Comparison between non-iterating and iterating Gauss-Seidel, constant steps (0.5 s); iteration limit
is fairly strict with reltol = 10~7

Deviation between the iterative solution and the correct solution can be observed already in the first step,
for example, when using a fairly large step of 2 seconds (Figure 4).
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Figure 4: Comparison of iterating and non-iterating GAUSS-SEIDEL, for h = 2s

From this example it can be concluded, that using an iterative method does not necessarily improve the

accuracy of the result, though, it may increase stability.

4 Error control

When running the test case with error control enabled (Richardson/step-doubling error test), we expect the
master algorithm to choose the time steps such, that regardless of the selected master algorithm the results

are accurate within the requested tolerance band (Fig. 5).
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Figure 5: Comparison of iterating and non-iterating GAUSS-SEIDEL when using dynamic step adjustment

based on step-doubling/Richardson error control (reltol = abstol = 107%)

4.1 Comparison of time step sizes

The Gauss-Seidel variant takes almost always 3 iterations per step to converge. The comparison of the
time step sizes (Fig. 6) shows that the time step sizes are actually very similar, though the variant without

iteration permits generally slightly larger time steps.
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Figure 6: Comparison of accepted time step sizes for iterating and non-iterating variant

4.2 Comparison of error norms
The step-doubling technique is used in MASTERSIM to estimate the integration error. Hereby, two methods

are implemented, one using the differences of results (4) and one using the difference of the slopes (5), which
are approximated from the values. Note, constant extrapolation of input signals is used.

h
€Richardson = ‘y <t +2- 2> -y (t + h)‘ (4)

€slope = h (y (t + h)h - y (t + h)h/2>

h<y(t+h)y(t) y(t+h)_y(t+g)>

h h/2 5)

The value y (t +2- %) is obtained after executing two half-steps and y (¢ + h) is the value obtained with
the one full step. The derivatives y (¢ + h), and y (t +h), /2 at ¢t + h are approximated by backward finite
differences using the full step and the second half-step, respectively. Both estimates yield approximately in
the same norms (Fig. 7). For the calculation of the step size always the larger of the two was used, thus
resulting in smaller time steps on average.
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Figure 7: Comparison of error norms that were obtained when accepting a step, for the iterative Gauss-Seidel
variant



4.3 Evaluation of the true/global error

By computing the normalized difference between the co-simulation variants and the reference solution the
global error can be obtained (Fig. 8). The absolute differences A;and global errors €; are computed for each
data point ¢ with

Ni = YrMI,i — Yref,i
YFMIi — Yref,i
Yref,i

P =

where yparr is one of the FMI solutions (iterative or non-iterative).
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Figure 8: Absolute differences between computed prey and predator species population and reference solution
(top) and global error for the iterative and non-iterative variants and time step adjustment based
on error control with reltol = abstol = 1076

It is clear that despite the time step adjustment based on local error estimates the dampening of the model
equations cannot be fully prevented. And it appears that, at least for this test case, the iterative variant
tends to generate larger global errors. Furthermore, it is interesting to note that controling the local error
to be below 1076 will still yield a global error of 4 orders of magnitude larger (1072)!
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