
Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

Andreas Nicolai∗

August 2, 2019

Abstract

The test case discussed in this article is a coupled initial value problem, very well suited to investigate
the effect of error propagation and the accuracy differences between non-iterating and iterating master
algorithms. Further discussed are the error test methods implemented in MASTERSIM. The example
case also illustrates, that contrary to expectations the use of the iterating Gauss-Seidel algorithm with
adaptive time stepping based on error control generates a solution of slightly less accuracy while using
many more model evaluations.

∗Institut für Bauklimatik, Technische Universität Dresden, andreas.nicolai@tu-dresden.de

Page 1 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

Contents

1 Test Description 3
1.1 Mathematical Equations . 3
1.2 Requested solution . 3
1.3 Expected results . 3
1.4 Reference Modelica Model . 4

2 Co-Simulation 4
2.1 Decomposition . 4
2.2 Evaluation Order . 4
2.3 Initial Conditions and Integration Interval . 4
2.4 Implementing FMUs . 4

3 Evaluation of Master-Algorithms 5
3.1 Gauss-Seidel without iteration and with constant step sizes 5
3.2 Gauss-Seidel with larger, constant step sizes and with/without iteration 5

4 Error control 6
4.1 Comparison of time step sizes . 7
4.2 Comparison of error norms . 7
4.3 Evaluation of the true/global error . 8

August 2, 2019 A. Nicolai Page 2 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

1 Test Description

The test case is based on the Lotka-Volterra example from Michael Tiller.
Tiller, M; Modelica by Example, http://book.xogeny.com

1.1 Mathematical Equations

ẋ = x (a − by) (1)

ẏ = y (dx − c) (2)

Variable x stands for the amount of prey species, y is the predator species. a is the reproduction rate, b
the reduction factor due to predation. c is the rate of starvation and d the rate factor representing grows of
predator species due to consumption of species x.

1.2 Requested solution

Solution for variables x and y is to be obtained for the time interval t ∈ [0, T], T = 10.

Constants shall be selected as follows:

• a = 0.1

• b = 0.02

• c = 0.4

• d = 0.02

1.3 Expected results

The problem is nonlinear and has a coupled solution, that can be, for example, be generated with a traditional
coupled system solver (e.g. Modelica). The solution for the given constants is shown in Figure 1.

x (prey)

y (predator)

x
(p

re
y)

 [-
--

]

0

5

10

15

20

25

30

35

40

Zeit [s]

0 20 40 60 80 100

Figure 1: Exact solution

The solution is completely continuous without any state events.

August 2, 2019 A. Nicolai Page 3 of 10

http://book.xogeny.com

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

1.4 Reference Modelica Model

The equations can be solved directly in a coupled manner with Modelica. The source code for a fully coupled
solution in Modelica is given below in Listing 1.

model LotkaVolterra
parameter Real A=0.1 "Reproduction rate of prey";
parameter Real B=0.02 "Mortality rate of predator per prey";
parameter Real C=0.4 "Mortality rate of predator";
parameter Real D=0.02 "Reproduction rate of predator per prey";
parameter Real x0=10 "Initial prey population";
parameter Real y0=10 "Initial predator population";
Real x(start=x0) "Prey population";
Real y(start=y0) "Predator population";

initial equation
x = x0;
y = y0;

equation
der(x) = x*(A-B*y);
der(y) = y*(D*x-C);

end LotkaVolterra;

Listing 1: Modelica Code Listing, adapted from M. Tiller Modelica by Example

2 Co-Simulation

2.1 Decomposition

For the purpose of testing Co-Simulation masters the test case is split into two parts, one for the prey species
and one for the predator species. Both are coupled in a cycle.

FMU Cycle Input Equations Output

Prey 0 y ẋ = x (a − by) x
Predator 0 x ẏ = y (dx − c) y

2.2 Evaluation Order

Prey FMU shall be evaluated first.

2.3 Initial Conditions and Integration Interval

The solution shall be obtained for the time interval T = [0, 100] with x (0) = y (0) = 10.

2.4 Implementing FMUs

FMUs are implemented in direct C/C++ code. The time integration has an exact solution, hereby using
constant values for input variables throughout the communication interval. For example, the time integration
formula for the prey species is derived as follows:

dx

dt
= x (A − By) = Gx

dx

x
= Gdt∫ x(t1)

x(t0)

1
x

dx =
∫ t1

t0

Gdt

ln x (t1) − ln x (t0) = G · (t1 − t0)
x (t1)
x (t0) = eG·(t1−t0)

x (t1) = x (t0) eG·(t1−t0) (3)

August 2, 2019 A. Nicolai Page 4 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

Equation (3) gives the exact solution, if y were a constant. However, since y (t) is a function of time and hence
also G (t) = A − By (t) is changing within the integration interval, the solution x (t1) holds an integration
error, they may become, due to the exponential nature of the equation, very large. It is also anticipated,
that this may result in instability in the outer solution method, especially when using a non-iterative master
algorithm.

The exact integral equation can be implemented quite naturally in C/C++ code. The code example in
Listing 2 below shows the relevant portion of the doStep() function of the FMU:

// state of FMU before integration :
// m_currentTimePoint = tIntervalStart ;
// m_y [0] = x(tIntervalStart)
// m_realInput [FMI_INPUT_Y] = y(tIntervalStart ... tCommunicationIntervalEnd) = const

// compute time step size
double dt = tCommunicationIntervalEnd - m_currentTimePoint;
double y = m_realInput[FMI_INPUT_Y];
double x = m_y [0];
double x_end = x*std::exp((A - B*y)*dt);
m_y[0] = x_end;

// update state of FMU to tCommunicationIntervalEnd
m_tInput = tCommunicationIntervalEnd;
m_realOutput[FMI_OUTPUT_X] = x_end;
m_currentTimePoint = tCommunicationIntervalEnd;

Listing 2: FMU Listing, doStep-function

3 Evaluation of Master-Algorithms

3.1 Gauss-Seidel without iteration and with constant step sizes

Running the integration with constant step size of h = 0.1s and without iteration already gives pretty good
results (see Figure 2).

Prey [ref]

Predator [ref]

Prey.x

Predator.y

Po
pu

la
tio

n

0

5

10

15

20

25

30

35

40

Time [s]

0 20 40 60 80 100

Figure 2: No iteration, constant steps (0.1 s)

3.2 Gauss-Seidel with larger, constant step sizes and with/without iteration

Using larger step sizes (for example h = 0.5s) we expect larger errors. In the variant without iteration, the
information about the opposing species concentration arrives delayed in the FMU, because the integration
in each interval is done using the values at the begin of the interval. Hence, the curves have a slight delay
behind the correct solution, see Figure 3 (no iteration-curves).

Alternatively, an iterative Gauss-Seidel method could be used. When the solution has converged (which
corresponds somewhat to an implicit integration scheme), the species concentrations are computed using

August 2, 2019 A. Nicolai Page 5 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

the opposite species concentration at the end of each integration interval. This leads to a much dampened
solution where the curves react faster compared to the reference solution (Figure 3, GS curves).

Consider, for example, the interval 25..25,5 s. The concentration of the predator species is strongly increasing
in this interval, from y (25) = 3.52 to y (25.5) = 4.22. If the integration of the prey species is done over
this interval using the input value y (25) the concentration x (25.5) will be larger than that obtained when
integrating with a larger predator concentration y (25.5). As a result, the prey concentration will not reach
the same concentration as the correct solution, and subsequently, also the predator concentration will be
affected leading to an overall dampened solution. With this time step size, effectively a different problem
appears to be solved.

Prey [ref]

Prey (no iteration)

Prey (GS)

Predator [ref]

Predator (no iteration)

Predator (GS)

Po
pu

la
tio

n

0

5

10

15

20

25

30

35

40

Time [s]
0 20 40 60 80 100

Figure 3: Comparison between non-iterating and iterating Gauss-Seidel, constant steps (0.5 s); iteration limit
is fairly strict with reltol = 10−7

Deviation between the iterative solution and the correct solution can be observed already in the first step,
for example, when using a fairly large step of 2 seconds (Figure 4).

Prey [ref]

Prey (no iteration)

Prey (GS)

Predator [ref]

Predator (no iteration)

Predator (GS)

Po
pu

la
tio

n

0

2

4

6

8

10

12

14

Time [s]
0 1 2 3 4 5

Figure 4: Comparison of iterating and non-iterating GAUSS-SEIDEL, for h = 2s

From this example it can be concluded, that using an iterative method does not necessarily improve the
accuracy of the result, though, it may increase stability.

4 Error control

When running the test case with error control enabled (Richardson/step-doubling error test), we expect the
master algorithm to choose the time steps such, that regardless of the selected master algorithm the results
are accurate within the requested tolerance band. This is indeed the case, as can be seen in the result
comparison in Figure 5.

August 2, 2019 A. Nicolai Page 6 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

Prey [ref] Predator [ref]

Prey (no iteration) Predator (no iteration)

Prey (GS) Predator (GS)

Po
pu

la
tio

n

0

5

10

15

20

25

30

35

40

Time [s]
0 5 10 15 20 25 30 35 40

Figure 5: Comparison of iterating and non-iterating GAUSS-SEIDEL when using dynamic step adjustment
based on step-doubling/Richardson error control (reltol = abstol = 10−6)

4.1 Comparison of time step sizes

The Gauss-Seidel variant takes almost always 3 iterations per step to converge. The comparison of the
time step sizes (Fig. 6) shows that the time step sizes are actually very similar, though the variant without
iteration permits generally slightly larger time steps.

Gauss-Seidel No iteration

St
ep

Si
ze

 [s
]

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0,02

Time [s]
0 5 10 15 20 25 30 35 40

Figure 6: Comparison of accepted time step sizes for iterating and non-iterating variant

4.2 Comparison of error norms

The step-doubling technique is used in MASTERSIM to estimate the integration error. Hereby, two methods
are implemented, one using the differences of results (4) and one using the difference of the slopes (5), which

August 2, 2019 A. Nicolai Page 7 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

are approximated from the values. Note, constant extrapolation of input signals is used.

ϵRichardson =
⏐⏐⏐⏐y(t + 2 · h

2

)
− y (t + h)

⏐⏐⏐⏐ (4)

ϵslope = h
(

ẏ (t + h)h − ẏ (t + h)h/2

)
= h

(
y (t + h) − y (t)

h
−

y (t + h) − y
(
t + h

2
)

h/2

)
(5)

The value y
(
t + 2 · h

2
)
is obtained after executing two half-steps and y (t + h) is the value obtained with

the one full step. The derivatives ẏ (t + h)h and ẏ (t + h)h/2 at t + h are approximated by backward finite
differences using the full step and the second half-step, respectively. Both estimates yield approximately the
same norms (Fig. 7). For the calculation of the step size always the larger of the two was used, thus resulting
in smaller time steps on average.

ErrorNormSlopeCheck ErrorNormRichardson

Er
ro

r n
or

m

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Time [s]
0 5 10 15 20 25 30 35 40

Figure 7: Comparison of error norms that were obtained when accepting a step, for the iterative Gauss-Seidel
variant

4.3 Evaluation of the true/global error

By computing the normalized difference between the co-simulation variants and the reference solution the
global error can be obtained (Fig. 8). The absolute differences ∆i and global errors ϵi are computed for each
data point i with

∆i = yF MI,i − yref,i

ϵi =
⏐⏐⏐⏐yF MI,i − yref,i

yref,i

⏐⏐⏐⏐
where yF MI is one of the FMI solutions (iterative or non-iterative).

August 2, 2019 A. Nicolai Page 8 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

Prey (no iteration)

Prey (GS)

Predator (no iteration)

Predator (GS)Di
ffe

re
nc

e
be

tw
ee

n
FM

I s
ol

ut
io

n
an

d
re

fe
re

nc
e

re
su

lts

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

Time [s]
0 20 40 60 80 100

Prey (no iteration)

Prey (GS)

Predator (no iteration)

Predator (GS)

Gl
ob

al
 e

rro
r

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

Time [s]
0 20 40 60 80 100

Figure 8: Absolute differences between computed prey and predator species population and reference solution
(top) and global error for the iterative and non-iterative variants and time step adjustment based
on error control with reltol = abstol = 10−6

Clearly, despite the time step adjustment based on local error estimates the dampening of the model equations
cannot be fully prevented. And it appears that, at least for this test case, the iterative variant tends to
generate larger global errors. Furthermore, it is interesting to note that controling the local error to be
below 10−6 will still yield a global error of 3 orders of magnitude larger (10−3).

This can be explained by the error propagation in this model. As can be seen from the solver statistics, more
than 8000 steps (Master-Algorithm calls) were taken in both variants:

Solver statistics
--
Wall clock time = 220.991 ms
--
Output writing = 195.781 ms
Master -Algorithm = 16.093 ms 8653
Convergence failures = 0
Convergence iteration limit exceeded = 0
Error test time and failure count = 5.276 ms 7
--
Prey doStep = 5.132 ms 25980

getState = 0.656 ms 8653
setState = 0.673 ms 8667

Predator doStep = 4.351 ms 25980
getState = 0.607 ms 8653
setState = 0.494 ms 8667

--

Listing 3: Non-iterating GAUSS-SEIDEL algorithm

August 2, 2019 A. Nicolai Page 9 of 10

Co-Simulation-Test Case: Predator-Prey (Lotka-Volterra) System

Solver statistics
--
Wall clock time = 257.438 ms
--
Output writing = 204.746 ms
Master -Algorithm = 39.133 ms 8872
Convergence failures = 0
Convergence iteration limit exceeded = 0
Error test time and failure count = 11.838 ms 0
--
Prey doStep = 10.061 ms 57775

getState = 1.611 ms 26616
setState = 2.191 ms 40031

Predator doStep = 9.331 ms 57775
getState = 1.373 ms 26616
setState = 1.947 ms 40031

--

Listing 4: Iteration GAUSS-SEIDEL algorithm; on average 3 iterations per step

Assuming a relative error of about the same magnitude in each step and no error cancellation, this would
indeed yield a large global error. This effect is, however, strongly depending on the problem.

Also, it can be noted that even the non-iterating variant (see statistics in Listing 3) requires approximately
3 doStep() evaluations per accepted step. For the iterating variant (see statistics in Listing 4) these are
more than 6 evaluations per accepted step. Thus, for this example, the application of iterating Gauss-Seidel
is not recommended. Further tests may show that this conclusion can be generalized: when employing time
step adjustment based on error estimates, non-iterating Gauss-Seidel is to be preferred.

August 2, 2019 A. Nicolai Page 10 of 10

	1 Test Description
	1.1 Mathematical Equations
	1.2 Requested solution
	1.3 Expected results
	1.4 Reference Modelica Model

	2 Co-Simulation
	2.1 Decomposition
	2.2 Evaluation Order
	2.3 Initial Conditions and Integration Interval
	2.4 Implementing FMUs

	3 Evaluation of Master-Algorithms
	3.1 Gauss-Seidel without iteration and with constant step sizes
	3.2 Gauss-Seidel with larger, constant step sizes and with/without iteration

	4 Error control
	4.1 Comparison of time step sizes
	4.2 Comparison of error norms
	4.3 Evaluation of the true/global error

