

Fakultät Architektur Institut für Bauklimatik

New features and optimizations in the hygrothermal transport model DELPHIN 6

Dr. Andreas Nicolai

Dresden, 09/21 2017

- Physical model in DELPHIN 6
 - Coupled heat and moisture transport model with detailed moisture transport and storage model
 - Optional ice formation model
 - Optional air flow model (forced flow/bouancy driven), fully coupled to heat and moisture transport model
 - Optional salt transport model including transient phase transitions
 - Many boundary condition models, contact resistances, source/sink models, special models (e.g. interior longwave radiation exchange)
 - Mostly the same as in DELPHIN 5, but thoroughly reviewed and more efficient/stable (*routinely tested with automated benchmarks*)
 - Support for 3D geometries (in *solver*, not in user interface)
- Optimization of the solver engine
 - Iterative preconditioned Newton-Krylov-Methods significantly accelerate simulation of 2D details, enable 3D simulations
 - Parallel solver
 - Optimized memory layout for faster physics evaluation algorithms

The DELPHIN 6 Software

- Executables (Windows executables, on MacOSX and Linux similar naming)
 - DELPHIN 6 User Interface (modelling environment)
 Delphin6.exe
 - Console solver (command line argument controlled)
 DelphinSolver.exe
 - Graphical (modern) solver, just as fast as the command line solver (except for parallel solver variants), yet with live preview of simulation results
 DelphinSolverUI.exe
 - Command line discretizer (can be used to automatically perform grid sensitivity studies)

CmdDiscretise.exe

- DSixOutputConverter utility (extracts data from output files, converts data into other formats, creates TECPLOT files)
 DSixOutputConverter.exe
- Databases (Climatic Data and Materials)
- Post-Processing
 - Either DELPHIN 5 Post-Processing (can be installed alongside with DELPHIN 6)
 - Or new POSTPROC 2 software (recommended for simulation analysis)

New Icon and Splashscreen

Picture taken from IBK-GWT project about improving construction detail for intersection of interior separation wall with inside-insulated historic brick wall

- Multiple languages
 - ➢ Switch with menu option Edit → Languages...
 - Currently: English, German, French
 - > Translation is simple \rightarrow Translators are welcome!
- Software runs natively on *Windows, MacOS* and *Linux*

• On Mac OS X: Security \rightarrow allow software from any sources

• Welcome page

- Recently used projects (with preview)
- Examples/Validation cases (with descriptions)
- Current version, Update information, Web-content from Bauklimatik-Dresden.de

- 3 Views with project data
 - Project properties, location and climate
 - Construction/Geometry view (main modelling view)
 - Simulation view (physical model settings, solver options, simulation start)

New Modeling View

New Modeling View

• Zooming via mouse scroll wheel

• Equidistant view toggle mode

Consistent Coordinate System Definition

- Assignment order ٠
 - Later assignments override earlier assignments (applies to all assignments) \geq

Column indexes

after assigning

material to range 0 0 2 3

materials assignments

after assigning VOID material to range 1122

after assigning another material to range 2121

Andreas Nicolai (TUD)

• Highlighting of edges/boundaries with assignments

Modeling Improvements

• Highlighting of coordinate outputs (sensors)

• Highlighting of side assignments

• Indication of used and unused definitions

• Assignment lists are located alongside

definition window

(re-introduced from DELPHIN 4)

Materials				
🖹 🕂 🥒	问 — 🔄 C			
Fliesenkleber	[67]			
Ziegel, Sichtm	auerwerk [505]			
CalciumSilicate	e T500 [409]			
Kalkputz (histo	orisch) [148]			
CalciumSilicate	(Epasit) [412]			
Kalkputz - Obe	erputz [477]			
♦ ⊕ 				
0 0 43 307	Ziegel, Sichtmauerwerk [505]			
44 0 57 307	Kalkputz (historisch) [148]			
97 0 107 307	Kalkputz - Oberputz [477]			
89 227 96 234	Kalkputz - Oberputz [477]			
89 73 96 80	Kalkputz - Oberputz [477]			
73 212 88 249	CalciumSilicate (Epasit) [412]			
73 58 88 95	CalciumSilicate (Epasit) [412]			

New Modeling Concepts

- No embedded material data
 - Material files (*.m6) are always referenced
 - Material list/definition window lists Material References
- Interfaces group several boundary conditions
 - Instead of assigning individual boundary conditions to several sides, interfaces are defined (e.g. outside, inside, basement, ...) and these are associated with boundary conditions
 - Support for *Engineering Interface Models* (predefined sets of boundary conditions and related climatic conditions)

New Modeling Concepts

• Interfaces – Example

New Modeling Concepts

- Interfaces Engineering Level
 - DIN indoor and outdoor climate
 - ➢ WTA model
 - Standard model
 - Boundary Conditions and Climate Conditions are created automatically during simulation setup
 - Engineering interface definitions can be converted to detailed model

Output handling

- Output file definitions
 - ➢ Filename
 - > Physical Quantity
 - Grid reference
 - Time and spatial handling (averaging/integration)
 - Value unit
- Grids
 - Define intervals and output steps
- Global options (for *all* files)
 - Binary/ASCII Format
 - ASCII-Format precision (rarely needed, for example for energy density integrals to compute overall gains/losses)
 - Output time unit (same for all output files)
 - Over-hygroscopic moisture content limit (as relative humidity)

Ausgabeoptionen		
Ausgabezeiteinheit:	h 🔹	
Anfang des überhygroskopischen Feuchtegehalts (Kondensat):	95	%
Schreibe Ausgaben im Binärformat		
Zahlengenauigkeit in ASCII-Dateien:	-1 💂	

Output handling

• Physical Quantities

- Quantity defines also default unit and type (flux or field quantity)
- > Anything calculated in DELPHIN is available as a quantity
- Includes transport coefficients (which can be monitored in output files)

Туре	Name	Unit	Description
tate variable or related quantity	AirPermeability	s	Air permeability
tate variable or related quantity	AirPermeability_Y	s	Air permeability in simulation direction Y
tate variable or related quantity	AirPermeability_Z	s	Air permeability in simulation direction Z
tate variable or related quantity	CapillaryPressure	Pa	Capillary pressure (negative)
tate variable or related quantity	EnergyDensity	J/m3	Energy density
tate variable or related quantity	GasMassDensity	kg/m3	Mass density of gaseous phase with respect to REV
tate variable or related quantity	GasPressure	Pa	Gas pressure (total gas pressure)
tate variable or related quantity	GasPressureOffset	Pa	Gas pressure offset to atmospheric pressure
tate variable or related quantity	IceMassDensity	kg/m3	Total mass density of ice with respect to REV
tate variable or related quantity	IntrinsicSolutionDensity	kg/m3	Density of salt solution with respect to liquid volume
tate variable or related quantity	IntrinsicVaporMassDensity	kg/m3	Density of water vapor with respect to gas volume
tate variable or related quantity	IntrinsicWaterMassDensity	kg/m3	Density of liquid water with respect to liquid volume
tate variable or related quantity	KirchhoffPotentialLiquidFlux	-	Kirchhoff potential, integral of liquid water conductivity over liquid pressure
tate variable or related quantity	KirchhoffPotentialLiquidFlux_Y	-	Kirchhoff potential, integral of liquid water conductivity over liquid pressure in simulation direction Y
tate variable or related quantity	KirchhoffPotentialLiquidFlux_Z	-	Kirchhoff potential, integral of liquid water conductivity over liquid pressure in simulation direction Z
tate variable or related quantity	LiquidContent	m3/m3	Volume fraction of liquid phase (REV)
ate variable or related quantity	LiquidMassDensity	kg/m3	Total mass density of liquid water with respect to REV
tate variable or related quantity	LiquidPermeability	s	Liquid water permeability
tate variable or related quantity	LiquidPermeability_Y	s	Liquid water permeability in material direction Y
tate variable or related quantity	LiquidPermeability_Z	s	Liquid water permeability in simulation direction Z
tate variable or related quantity	LiquidPressure	Pa	Liquid pressure
tate variable or related quantity	MoistureMassByMass	kg/kg	Total mass of liquid water and water vapor per mass of REV
tate variable or related quantity	MoistureMassDensity	kg/m3	Total mass density of liquid water, water vapor and ice
tate variable or related quantity	Molality	mol/kg	Molality of dissolved salt species
tate variable or related quantity	OverhygroscopicWaterMassDensity	kg/m3	Mass density of overhygroscopic liquid water (condensate) with respect to REV
tate variable or related quantity	RelativeHumidity	%	Relative humidity
tate variable or related quantity	SaltDiffusionCoefficient	m2/s	Diffusion coefficient of salt in porous material related to molality gradient
tate variable or related quantity	SolutionMassDensity	kg/m3	Mass density of salt solution with respect to REV
tate variable or related quantity	Temperature	С	Temperature
tate variable or related quantity	ThermalConductivity	W/mK	Thermal conductivity

Output handling

- Flux output sign conventions
 - Distinguish between boundary/surface fluxes and flux fields <u>different sign</u> <u>conventions</u>
 - Fluxes are assigned to sides
 - One flux output (definition) can be assigned to several locations

• Rules

When flux outputs are assigned <u>only to boundary sides</u> — Flux is *positive* when it flows *into* the construction i.e. a positive moisture flux increases the moisture content in the construction, a positive heat flux increases energy density (and temperature)

When flux is assigned to <u>at least one internal side</u>, flux is *positive* when it flows into *positive coordinate* direction

New Modeling Features

- Schedules
 - Replace time limits for boundary and field conditions, can be specified like output intervals
- Interface BC indication
 - Color bars indicate types of BC associated with an interface

- Intelligent Auto-Discretization
 - Clusters grid only at boundaries where interfaces are assigned
 - Recognizes and keeps field assignments (outputs/sources)

Automatic grid generation		₹
Auto-Discretization Options	Grid statistics	
V-Direction	Grid elements (total/used):	14345/14007
V-Direction	Smallest grid dimension in [m] (x/y):	0.001/0.001
Z-Direction (only for 3D grids)	Largest grid dimension in [m] (x/y):	0.0451425/0.099188
	Grid Preview	
Variable Grid Options		
Minimum element size: 1 mm 💌		
Maximum element size: 10 cm 💌		
Stretch factor: 1.3		
	ОК	ancel Apply

Databases

- Material Data Base
 - set of **m6** Material files (as in DELPHIN 5)
 - data files are read in separate thread no longer delay when importing materials
- Climate Data
 - New format: c6b climate data container files for use in CCM (Climate Calculation Module)
 - Basically same content as EPW, but binary format (data protection), epw natively supported
 - Free Climate Data Editor (CCMEditor) tool available for editing/converting data
- Additional time series (climate data)
 - Still using **ccd** files as in DELPHIN 5
 - Now supporting csv files (tabulator separated data files): first column time points, second column values, description and units in first row

Example file:	Time [d]	Temperature [C]
	0.0	10.0
	0.02083	9.0
	0.041667	8.7
	0.0625	7.4

Model and Simulation Settings

Model Options Solver Options Performance Options	Sta
The settings on this page control basic properties of the physical model. Image: The settings on this page control basic properties of the physical model. Image: The settings on this page control basic properties of the physical model. Image: The settings on this page control basic properties of the physical model. Image: The settings on this page control basic properties of the physical model. Image: The settings on this page control basic properties of the physical model. Image: The setting of the physical model. Image: The physical model. <th>Additional Modeling Options Use anisotropic material transport model Prevent overfilling Output options Output options Output time unit: d v Over-hygroscopic moisture limit (condensate): 95 % Virite binary output files Number precision in ASCII files: -1 Simulation Time Frame Start date 01/01/2007 00:00:00 Find date 01/06/2007 00:00:00 Duration 5 d</th>	Additional Modeling Options Use anisotropic material transport model Prevent overfilling Output options Output options Output time unit: d v Over-hygroscopic moisture limit (condensate): 95 % Virite binary output files Number precision in ASCII files: -1 Simulation Time Frame Start date 01/01/2007 00:00:00 Find date 01/06/2007 00:00:00 Duration 5 d
Salt Balance Equations Salt Simulation Options Pollutant Balance Equations VOC Simulation Options	 First page: Model options Contains settings, that define physica model and naturally give different results

Model and Simulation Settings

Model Options Solver Op	ions Performance Options			
The options and settings on this page determine accuracy of the calculation and thus also the performance,				
Relative Tolerance:		0.1		
Absolute tolerances				
Moisture Mass Balance Equati	on:	1e-06	1	
Air Mass Balance Equation:		1e-06		
Salt Mass Balance Equations:		1e-12	1	
Pollutant Mass Balance Equat	ons:	1e-10		

Second page: Solver options

 Tolerances control error test – to how many digits shall my *conserved quantities* be accurate

Mind: there is a non-linear relationship between conserved quantities

and analysed properties (e.g. relative humidity)

- Settings have an influence on model results
- Smaller tolerances slow down simulation but can help increase robustness!

Maximum time step size:

Model and Simulation Settings

Model Options Solver Options Performance Op	ptions	
The options in this page only have an impact on simula	tion performance, not on results.	
Integrator:	CVODE [CVODE]	•
Maximum Method Order (1-5):		5
Non-linear Iteration Convergence Coefficient:		1e-07
inear Equation System Solver:	Sparse direct solver (KLU) [KLU]	
System band width (direct band solver):		auto
Maximum Dimension for Krylov Subspace:		30
inear Iteration Convergence Coefficient:		0.1
Preconditioner:	Automatic selection [Auto]	▼.
System band width (band preconditioner):		auto
evel of fill-in (ILU):		auto
Initial time step:		1 min 🔻
Time step size limit (model consistency):		0.0001 s 🔹

Third page: Performance options

Numerical settings only influence simulation speed

(differences in order of rounding errors possible)

New Solvers / Performance Optimization

- Time integrators available
 - Explict Euler (for debugging purposes)
 - > Runge Kutta 47 (Dormand-Prince), explicit solver
 - Implicit Euler (for testing numerically tricky problems)
 - **CVODE** (default, as in DELPHIN 5)
 - > Alternating-Direct-Implicit (ADI), good for certain 2D/3D problems, research code
- Linear equation system solvers (for use within implicit solvers)
 - Banded (general 1D simulations, small 2D simulations)
 - Block-Tridiagonal (VOC/Salt simulations in 1D)
 - Sparse direct (KLU solver, for thermal problems in 2D/3D)
 - **GMRES** and **BiCGStab** (for general 2D/3D cases) Krylov-Subspace methods!
- Preconditioners (for Krylow-Subspace solvers)
 - Banded
 - > ILU (incomplete LU factorization)
 - ... others are research/test implementations
- Physical model evaluation done in parallel (**OpenMP parallelization**)

See presentation and workshop from BauSIM 2016 for details

New Solvers / Performance Optimization

- Example 1 EN ISO 10211 Case 2
 - Energy balance only (thermal bridge problem)
 - > 36666 Elements, 189 half-bandwidth (rectangular 194 x 189 grid)

Simulation time [s]

Bottom heat flux density [W/m2]

- Variants
 - ▶ Band solver vs. KLU (in DELPHIN 6)
 - Serial/parallel code (1 vs. 4 threads)
 - Parameters for steady-state result (transient accuracy does not matter)

New Solvers / Performance Optimization

- Example 2 Corner
 - Hygrothermal simulation
 - 10931 Elemente (21862 Unknowns)
- Variants
 - Serial banded solver in DELPHIN 5 (half-bandwidth 223)
 - Parallel GMRES solver in DELPHIN 6 (4 threads), ILU preconditioner, colored Jacobian (14 colors)

• Send projects to remote (powerful) server and collect results

-Remote Solver Server -	
Server (IP-Address):	remote.solver.achfs2.tu-dresden.de
Port:	10000
User:	andreas
Password:	•••••
	Login Logout

- Project input files are collected and exported into project package (*.d6pp)
- Project package is sent to server, scheduled in either *fast* or *slow* queue (*fast* jobs are automatically aborted after 30 minutes if not yet finished)
- > Once completed, results are archived as 7zip file and retrieved from server
- ➢ Results are extracted in projects directory just as if simulated locally → ready for PostProcessing

New License Model

- Only limited lifetime licenses
 - Much reduced license costs
 - Annual license duration with support and free updates/upgrades
 - Activation provided for work and private computer (linked to person/company)
 - Activation needs to be updated every year (license renewal)
- License/support renewal/extension:
 - Always for 1 year after last license expired, includes free updates/upgrades and support
 - Cannot skip renewal intervals, after approximately 4 years same price as new license
- Pricing:

Commercial license:	800	€ initial + 600 €/a
Academic license:	600	€/a
Student/teaching license:		€/a

all prices excluding VAT

Fakultät Architektur Institut für Bauklimatik

New features and optimizations in the hygrothermal transport model DELPHIN 6

Dr. Andreas Nicolai **Thank You! Questions?**

